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Abstract General m × m triangular systems of conservation laws in one space dimension are considered. These
systems arise in applications like multi-phase flows in porous media and are non-strictly hyperbolic. Simple and
efficient finite-volume schemes of the Godunov type are devised. These are based on a local decoupling of the sys-
tem into a series of single conservation laws with discontinuous coefficients and are hence termed semi-Godunov
schemes. These schemes are not based on the characteristic structure of the system. Some useful properties of the
schemes are derived and several numerical experiments demonstrate their robustness and computational efficiency.
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1 Introduction

We are interested in the following m × m system of conservation laws in one space dimension:

(ui )t + fi (u1, . . . , ui )x = 0, i = 1, . . . , m. (1.1)

Let U = (u1, u2, . . . , um) denote the vector of unknowns and f = ( f1, f2, . . . , fm). Then the Cauchy problem
for the above conservation laws can be written as{

Ut + f (U )x = 0,

U (x, 0) = U0(x).
(1.2)
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338 K. H. Karlsen et al.

Note that (1.1) has a special structure with the evolution of the i th variable ui being independent of the m − i
succeeding variables (ui+1, . . . , um). The Jacobian matrix of f is given by

A = ∂ f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1

∂u1
0 . . . 0

∂ f2

∂u1

∂ f2

∂u2
. . . 0

. . . . . .
. . . 0

∂ fm

∂u1

∂ fm

∂u2
. . .

∂ fm

∂um

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The flux Jacobian is a lower triangular matrix and hence the system is termed a triangular system of conservation
laws. The eigenvalues of the Jacobian (i.e., the wave speeds) are the diagonal entries of A given by

λi = ∂ fi

∂ui
, 1 ≤ i ≤ m.

Therefore the system (1.1) is hyperbolic. Since the eigenvalues may not be distinct, the conservation law (1.2) is
not strictly hyperbolic. The waves coincide for U such that

λi (U ) = ∂ fi

∂ui
(U ) = ∂ f j

∂¼u j
(U ) = λ j (U ), i �= j.

Conservation laws where the characteristic speeds may coincide are called resonant. This resonance may lead to a
very complicated solution of the Riemann problem, thereby making it difficult to design numerical schemes based
on solving Riemann problems. The main aim of this paper is to formulate simple and efficient numerical schemes
of finite-volume type for (1.1).

We would like to point out that for equations of the type (1.1), no general existence result for weak solutions
is known. It is well known that weak solutions of conservation laws are not necessarily unique and we need the
solutions to satisfy entropy conditions. For scalar conservation laws, one can prove uniqueness for entropy solutions.
However, the situation is not so clear for general systems and to derive the correct type of entropy conditions is a big
challenge. Since (1.1) is not strictly hyperbolic, there is no avialable notion of entropy solutions for this equation
at the moment and we plan to take up the uniqueness problem for this system in future works.

A special case for (1.1) is the 2 × 2 system:⎧⎨
⎩

(u1)t + f (u1)x = 0, (x, t) ∈ R × R
+,

(u2)t + g(u1, u2)x = 0, (x, t) ∈ R × R
+,

(u1, u2)(x, 0) = (u1,0(x), u2,0(x)), x ∈ R.

(1.3)

The above system has the same resonant structure as the more general system (1.1) and serves as a prototype for the
general case. In Sect. 2 we argue that a conservation law of this type can serve as a simplified model of three-phase
flow in porous media.

As mentioned earlier, the solution of the Riemann problem for (1.1) is complicated on account of resonance.
Most finite-volume numerical schemes, such as the Godunov or the Roe scheme that are based on solving local
(exact or approximate) Riemann problems, are very difficult to formulate for (1.1). Hence, we need to consider
numerical schemes that are not based on the characteristic structure of this system.

One possible choice is to use central schemes that do not rely on the characteristic structure. But then, first-
order central schemes like the Lax–Friedrichs scheme or the Rusanov scheme are too dissipative to use in practice,
although the situation can be remedied by using higher-order central schemes. We will not be considering central
schemes in this paper.

Another alternative is to devise upwind schemes which resolve the solutions satisfactorily, even at first order. In
this paper, we formulate a new class of such schemes that do not rely on the characteristic structure or solutions
of the Riemann problems. Instead, we will locally (in time) solve only individual component equations of (1.1) as
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Semi-Godunov schemes for general triangular systems of conservation laws 339

scalar conservation laws by treating the other variables as coefficients for the scalar equation. Hence, locally we
reduce the system (1.1) to a set of scalar conservation laws with discontinuous coefficients of the form:{

wt + h(k(x, t), w)x = 0, (x, t) ∈ R × R
+,

w(x, 0) = w0(x), x ∈ R.
(1.4)

where w is the conserved variable and the coefficient k is allowed to be discontinuous along curves in the (x, t)-
plane. The above approach can be easily illustrated for the prototype system (1.3). Indeed, one can see that, since the
evolution of u1 is independent of u2 in (1.3), we can evolve u1 and treat it as a coefficient in the evolution equation
for u2, thus reducing (1.3) to an equation of the form (1.4). The same holds for the more general system (1.1) by
iterating the above steps for all the m equations. Equations of the form (1.4) have been studied widely in recent
years and a fairly well developed theoretical and numerical treatment is available, see [1–9] and the references cited
therein for more details.

This approach of deriving finite-volume schemes for conservation laws by locally viewing each component equa-
tion as a scalar conservation law but with discontinuous coefficients was first explored in the case of the 2×2 system
(1.3) in [10], and the resulting numerical schemes were termed semi-Godunov schemes. The purpose of this paper is
to design semi-Godunov schemes for more general m ×m triangular systems (1.1). The semi-Godunov schemes do
not use Riemann solutions for the full system and are therefore independent of the characteristic structure of (1.1).
In this way, we avoid the obstacles posed by resonance. Furthermore, these schemes are very simple to implement.

We have organized the rest of this paper as follows. In Sect. 2, we will describe a reduced three-phase flow model
where the system (1.3) arises. The semi-Godunov schemes are defined in Sect. 3 while numerical experiments
involving these schemes are shown in Sect. 4 and the contents of this paper are summarized in Sect. 5.

2 A triangular three-phase flow model

In this section we argue that triangular systems of conservation laws of the type (1.3) can be used as models for
three-phase flow in porous media.

Simulation of a variety of oil-recovery processes involve models of three-phase flow in porous media. Often the
three phases of interest are oil, gas, and water. As a model we consider incompressible, immiscible three-phase flow
in a one-dimensional homogeneous and isotropic reservoir (see, e.g., [11]). The oil, water, and gas saturations are
given by So, Sw, Sg, respectively.

The mass-conservation equation for phase l = w, o, g reads

φ(Sl)t + (Ul)x = 0, (2.1)

where φ is the porosity of the medium and Ul is the Darcy velocity or flow rate corresponding to each phase l. By
Darcy’s law, the flow rate is given by

Ul = −kλl

(
∂ Pl

∂x
− G

)
l = w, o, g,

where k denotes the absolute permeability of the medium, λl is the mobility (relative permeability divided by vis-
cosity) of phase l, Pl is the pressure of phase l, and G is the gravity term. We assume that the flow is incompressible,
i.e., the total flow rate q = ∑

l=w,o,g Ul is a constant. For the sake of simplicity, we assume that the differences in
the capillary pressures between the phases are zero. This assumption is reasonable when the total flow rate is high
(the flow is convection-dominated).

By adding the mass conservation equations (2.1) and using the above assumptions, we arrive at the following
2 × 2 system of conservation laws:⎧⎨
⎩

(Sg)t + (Fg(Sg, Sw, So))x = 0,

(Sw)t + (Fw(Sg, Sw, So))x = 0,

Sg + Sw + So = 1,

(2.2)
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where the fluxes are given by:

Fg(Sg, Sw, So) = qλg

λt
+ k

λt
λwλg(gw − gg) + k

λt
λoλg(go − gg),

Fw(Sg, Sw, So) = qλw

λt
+ k

λt
λwλg(gg − gw) + k

λt
λoλw(go − gw),

where λt = λo + λg + λw is the total mobility and gg, go, and gw are the gravity terms associated with each
respective phase. Only the mobilities are functions of the saturations.

It is well known that (2.2) can be a mixed-type system, i.e., contain elliptic regions and thus fail to be hyperbolic.
It is outside the scope of this paper to discuss this feature here. We refer to [12] (and the references therein) for a
review of some of the current views that exist today regarding mathematical and numerical theory for mixed-type
systems.

In many situations the mobility of the gas phase is much larger than that of the other phases. This means that the
flux of gas is largely independent of whether the other phase is oil or water. As a consequence

Fg(Sg, Sw, So) = F̃(Sg, 1 − Sg) = F̂(Sg).

Assuming this relationship, system (2.2) reduces to the following system

(Sg)t + (F̂g(Sg))x = 0,

(Sw)t + (Fw(Sg, Sw))x = 0.
(2.3)

The above equation is a special case of (1.1). We refer to [13] and the references cited therein for the model when
capillary forces are included.

It is to be emphasized that, although the assumption of independence of the gas phase is not valid for all frac-
tional flow functions, there exists a large class of fractional flow functions for which this assumption appears to be
reasonable. In view of the fact that this assumption makes the model simpler and much more tractable, we can use
this “reduced” model in several situations. A careful numerical study of this model (2.3) as an approximation to the
full three-phase flow model needs to be carried out. An essential ingredient for this program is the development of
efficient numerical schemes for (1.1).

We remark that a one-dimensional model like the one that we are using is a good starting point for developing
numerical schemes for the full three-dimensional model where one can use the one-dimensional numerical fluxes
in directions normal to volume interfaces or along streamlines.

3 Semi-Godunov schemes

In this section, we describe the semi-Godunov finite-volume schemes for the general m ×m triangular system (1.1).
We describe two schemes based on different approaches for solving single conservation laws with discontinuous
coefficients.

3.1 Semi-Godunov (exact) scheme.

We use a uniform space-time grid with space size �x and time step �t . The discretization parameters are related
by the standard CFL condition,

�t

�x
M ≤ 1

2
,

where

M = max
1≤i≤m

max
ai ∈[si ,Si ]

∂ fi

∂ui
(a1, a2, . . . , ai ),
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with si , Si being defined in (3.12). Let tn = n�t and x j = j�x for n = 0, 1, 2, . . . and j = . . . ,−1,−1/2, 0, 1/2,

1, . . . . Let I j and I n denote the intervals

I j = [x j−1/2, x j+1/2), I n = [tn, tn+1).

Set

χn
j (x, t) = χI j (x)χI n (t),

where χ� denotes the characteristic function of a set �.
The initial data are discretized by taking cell averages:

U 0
j = 1

�x

∫ x j+1/2

x j−1/2

U (x, 0) dx .

Assuming that the approximate solutions U n
j at the n-th time level are known, we have to determine the updates

U n+1
j at the next time level. Next, we describe the algorithm for computing these updates.

The Algorithm.
Step 1. Consider the first component equation of (1.1) given by

(u1)t + ( f1(u1))x = 0.

Since it is a scalar conservation law, we can update it by a standard Godunov-type flux to obtain the updates:

un+1
(1, j) = un

(1, j) − �t

�x

(
F1

(
un

(1, j), un
(1, j+1)

)
− F1

(
un

(1, j−1), un
(1, j)

))
, (3.1)

where F1 is the (scalar) Godunov flux with respect to the function f1. For any function h, the Godunov flux H is
given by

H(a, b) =
⎧⎨
⎩

min
θ∈[a,b] h(θ), if a ≤ b,

max
θ∈[b,a] h(θ), otherwise.

(3.2)

Note that the above flux is Lipschitz and is non-decreasing in the first variable and non-increasing in the second
variable.

We define approximate solution u�x
i on R × R

+ for i = 1, . . . , m by setting

u�x
i (x, t) =

∑
n, j

χn
j (x, t)un

i, j .

Step 2. Once we have the update for u1, the next step is to consider the equation for the second component u2,
which reads

(u2)t + ( f2(u1, u2))x = 0.

Instead of viewing u1 as an unknown in the above equation, we will treat it as a coefficient locally, i.e., we substitute
u�x

1 (x, tn) instead of u1 in the above equation to obtain the approximate solution u�x
2 as a solutions of the local

Riemann problem

(u�x
2 )t + f2

(
un

(1, j), u�x
2

)
x

= 0, if x < x j+1/2,

(u�x
2 )t + f2

(
un

(1, j+1), u�x
2

)
x

= 0, if x > x j+1/2,

u�x
2 (x, tn) =

{
un

(2, j), x < x j+1/2,

un
(2, j+1), x > x j+1/2.

(3.3)

Thus, by locally freezing the unknown u1 in the second equation of (1.1), we obtain a scalar conservation law with
a discontinuous coefficient. We solve the Riemann problem (3.3) to obtain formulas for the interface fluxes.
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We can solve the Riemann problem (3.3) exactly for a large class of fluxes. The details of the solution of the
Riemann problem can be found in [1,8]. Using the Riemann solution to define interface fluxes, we obtain the
updating formula

un+1
(2, j) = un

(2, j) − �t

�x

(
F2

(
un

(1, j), un
(1, j+1), un

(2, j), un
(2, j+1)

)
− F2

(
un

(1, j−1), un
(1, j), un

(2, j−1), un
(2, j)

))
, (3.4)

with the numerical flux F2 being defined from the solutions of the Riemann problem (3.3). Explicit formulas for
F2 can be given in a large number of cases (see below).
Step i ( f or i = 3, . . . , m). The above strategy can be used at each step. At the i th step, we substitute the variables
u�x

k , 1 ≤ k ≤ i − 1, in place of the unknowns uk, 1 ≤ k ≤ i − 1, in the evolution equation for ui to obtain the
following Riemann problem at the interface x j+1/2 for j ∈ Z:

(u�x
i )t + fi

(
un

(1, j), . . . , un
(i−1, j), u�x

i

)
x

= 0, if x < x j+1/2,

(u�x
i )t + fi

(
un

(1, j+1), . . . , un
(i−1, j), u�x

i

)
x

= 0, if x > x j+1/2,
(3.5)

u�x
i (x, tn) =

{
un

(i, j), x < x j+1/2,

un
(i, j+1), x > x j+1/2.

We can solve the above Riemann problem exactly to obtain the updating formula

un+1
(i, j) = un

(i, j) − �t

�x

[
Fi

(
un

(1, j), un
(1, j+1), . . . , un

(i−1, j), un
(i−1, j+1), un

(i, j), un
(i, j+1)

)

−Fi
(

un
(1, j−1), un

(1, j), . . . , un
(i−1, j−1), un

(i−1, j), un
(i, j−1), un

(i, j)

)]
.

The numerical fluxes Fi are defined from the solutions of the Riemann problem. We can provide explicit formulas
for the numerical fluxes in several cases. For example, if the flux fi satisfies the hypothesis

a �→ fi (a1, a2, . . . , a(i−1), a) has at most one minimum (resp. maximum) (3.6)

and no maxima (resp. minima) in R for all a j ∈ R with j = 1, . . . , i.

In this case we have

Fi (a1, b1, . . . , ai−1, bi−1, ai , bi ) = max { fi (a1, . . . , ai−1, max(θa, ai )), fi (b1, . . . , bi−1, min(θb, bi ))},
By repeating the procedure for all the m components of U , we obtain the so-called semi-Godunov (exact) scheme,
which we will refer to as the SG(E) scheme. The updating formula for this scheme can be written compactly as

U n+1
j = U n

j − �t

�x

(
F(U n

j , U n
j+1) − F(U n

j−1, U n
j )

)
, (3.7)

with the U n
j = (un

(1, j), . . . , un
(i, j), . . . , u(m, j)) being the vector of unknowns and F = (F1, . . . , Fi , . . . , Fm) the

numerical flux vector.

3.2 Semi-Godunov (Approximate) scheme

Our second scheme is similar to the semi-Godunov (Exact) scheme, except instead of solving Riemann problems
for scalar conservation laws with discontinuous coefficients exactly, we will provide approximate solutions of them.

We use the same grid and CFL condition as for the SG(E) scheme. The initial data are discretized by taking cell
averages:

V 0
j = 1

�x

∫ x j+1/2

x j−1/2

U (x, 0)dx .

Let the approximate solution V n
j at the n-th time level be known. The goal is to determine the approximate solution

V n+1
j at the succeding time level. We describe next the algorithm for computing V n+1

j .
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The Algorithm.
Step 1. The first step is similar to Step 1 in the derivation of the SG(E) scheme. The update vn+1

(1, j) is given by

vn+1
(1, j) = vn

(1, j) − �t

�x

(
F

1
(
vn
(1, j), v

n
(1, j+1)

)
− F

1
(
vn
(1, j−1), v

n
(1, j)

))
,

where F
1

is the Godunov flux with respect to the function f1. We define the approximate solution v�x
i on R × R

+
for i = 1, . . . , m by setting

v�x
i (x, t) =

∑
n, j

χn
j (x, t)vn

i, j .

Step 2. Similarly to Step 2 in the derivation of the SG(E) scheme, we substitute the approximate solution v�x
1

instead of u1 in the evolution equation for u2 to get the Riemann problem

(v�x
2 )t + f2

(
vn
(1, j), v

�x
2

)
x

= 0, if x < x j+1/2,

(v�x
2 )t + f2

(
vn
(1, j+1), v

�x
2

)
x

= 0, if x > x j+1/2,

v�x
2 (x, tn) =

{
vn
(2, j), x < x j+1/2,

vn
(2, j+1), x > x j+1/2.

(3.8)

Rather than solving the above Riemann problem exactly, we can update v�x
2 by using an approximate Riemann

solution. The simplest way to build an approximate solver is to use the exact solution of the following Riemann
problem:

v�x
2 + f2

(
(vn

(1, j) + v(1, j+1))

2
, v�x

2

)
x

= 0, v�x
2 (x, tn) =

{
vn
(2, j), x < x j+1/2,

vn
(2, j+1), x > x j+1/2.

This is a Riemann problem for a single conservation law without discontinuities in the coefficient. This strategy leads
to the staggered schemes of [3–5]. The arithmetic average is the simplest choice for an equivalent flux, although
other choices can be considered. Fluxes resulting from the above Riemann solution yield the following updating
formula:

vn+1
(2, j) = vn

(2, j) − �t

�x

[
F

2
(
vn
(1, j), v

n
(1, j+1), v

n
(2, j), v

n
(2, j+1)

)
− F

2
(
vn
(1, j−1), v

n
(1, j), v

n
(2, j−1), v

n
(2, j)

)]
. (3.9)

where the interface flux F
2
(a1, b1, a2, b2) corresponds to the standard Godunov flux with respect to the function

f2(
a1+b1

2 , ·).
Step i (i = 3, . . . , m). The above strategy can be repeated for every step. At the i th step, we can use the approxi-
mate solution to the Riemann problem (3.5) by arithmetic averaging of the adjacent fluxes to obtain the following
updating formula:

vn+1
(i, j) = vn

(i, j) − �t

�x

[
F

i
(
vn
(1, j), v

n
(1, j+1), . . . , v

n
(i−1, j), v

n
(i−1, j+1), v

n
(i, j), un

(i, j+1)

)

−F
i
(
vn
(1, j−1), v

n
(1, j), . . . , v

n
(i−1, j−1), v

n
(i−1, j), v

n
(i, j−1), v

n
(i, j)

)]
, (3.10)

where the interface flux F(a1, b1, . . . , ai−1, bi−1, ai , bi ) is the Godunov flux corresponding to the flux function
fi (

a1+b1
2 , . . . ,

ai−1+bi−1
2 , ·).

By combining the fluxes derived from the approximate solutions of the Riemann problems for the corresponding
conservation laws with discontinuous fluxes (that is, updates like (3.10)), we obtain the so-called semi-Godunov
(approximate) scheme, which we will refer to as the SG(A) scheme. The updating formula for this scheme reads

V n+1
j = V n

j − �t

�x

(
F(V n

j , V n
j+1) − F(V n

j−1, V n
j )

)
, (3.11)

where V n
j = (vn

(1, j), . . . , v
n
(i, j), . . . , v(m, j)) and F = (F1, . . . , Fi , . . . , Fm).
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We remark that one can show that both of these schemes have several desirable properties. It is straightforward
to show that the numerical flux functions are consistent, i.e.,

F(V, V ) = f (V ).

Furthermore, in many cases one has L∞ bounds on the approximations generated by these semi-Godunov schemes.
In particular, this holds if there are numbers si < Si , i = 1, . . . , m, such that

fi (a1, . . . , ai−1, si ) = const. and fi (a1, . . . , ai−1, Si ) = const., (3.12)

for all a1, . . . , ai−1. In this case we have that

U 0
j ∈ �m

i=1 [si , Si ] for all j �⇒ U n
j ∈ �m

i=1 [si , Si ] for all j. (3.13)

Another case where the approximations remain bounded is if

| fi (a1, . . . , ai−1, a)| ≥ C log(|a| + 1),

for all i and all sufficiently large |a|, and where the constant does not depend on a1, . . . , ai−1. In this case there are
constants M and N such that∣∣∣un

i, j

∣∣∣ ≤ MeNn�t , for all n > 0 and all i and j. (3.14)

The proof of statements (3.13) and (3.14) involve a detailed study of the solution of the Riemann problem for
conservation laws with discontinuous flux, see [9].

4 Numerical experiments

As mentioned earlier, both the SG(E) and SG(A) schemes are very easy to implement since explicit formulas
are available for the numerical fluxes. The computational cost is similar to solving m uncoupled scalar equations
and is comparable to that of the Lax–Friedrichs scheme. However, these schemes are less dissipative than the
Lax–Friedrichs scheme. In this section, we present a few numerical experiments to illustrate the robustness of these
schemes.

Example 1 We use the flux functions

f1(u1) = 1

2
u2

1, f2(u1, u2) = 4u1u2(u2 − 1),

and the Riemann initial data

u1(x, 0) =
{

0.75, x < 0,

0.25, x ≥ 0,
u2(x, 0) = 0.5.

In this simple model problem, we can calculate a weak solution:

u1,ex(x, t) =
{

0.75 x < t/2,

0.25 x ≥ t/2,
u2,ex(x, t) =

⎧⎨
⎩

1/2 x < −t,
5/6 −t ≤ x < t/2,

1/2 x ≥ t/2.

Despite the absence of a proper entropy formulation for this system, we believe that the above solution is the correct
solution. In Fig. 1 we show the computed solutions for u2 at t = 0.75 using the SG(E) and the SG(A) schemes with
�x = 1/20 in the interval [−1, 1]. From this it seems that both schemes perform equally well, and this impression
is confirmed by other computations. As expected, the schemes have some numerical diffusion at the shocks, yet
the shock speeds are captured quite accurately. Since we have a formula for the exact solution in this case, we have
computed the relative errors in the L1 norm for various �x . The relative errors are defined as

e =
∑

j

∣∣∣u�x
2 (x j , t) − u�x

2,ex(x j , t)
∣∣∣

∑
j

∣∣∣u�x
2,ex(x j , t)

∣∣∣ ,
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Fig. 1 Example 1, the SG(E)- and the SG(A)-scheme approximating u2 with �x = 1/20 and t = 0.75

Table 1 100 × Relative L1

error for the SSG and ASG
schemes

We used �x = 2−n in the
interval [ − 1, 1]

n 3 4 5 6 7 8 9

SG(A) 8.6 5.1 2.8 1.4 0.7 0.4 0.018

SG(E) 7.6 3.7 2.1 1.1 0.6 0.3 0.015

where u2,ex is the exact solution (stated above) and t = 0.75. These errors are reported in Table 1. From this table,
it seems that both schemes are first-order convergent. We have tested both the schemes on several such model
problems and obtained similar results.

Example 2 To test the applicability of the triangular model as a model of three-phase flow in porous media, we have
compared the results obtained by the triangular and the full model on a water-flooding problem. This also serves as
a good test case for the efficiency of the schemes designed in this paper. We use the relative permeabilities

λg,w,o = 1

νg,w,o
S2

g,w,o,

with Si denoting the saturation of phase i , and νi the viscosity. We have used the following viscosities

νg = 1, νw = 80 and νo = 100.

In addition we have set

ρg = 1/20, ρw = 1 and ρo = 9/10,

and have set the gravitational constant and the absolute permeability to unity. This gives the flux functions

Fg (u, v) = u2

u2 + v2/100 + (1 − v − u)2/80

(
1 − 17v2

200
− 19(1 − v − u)2

160

)
,

Fo (u, v) = v2

100u2 + v2 + (5/4)(1 − v − u)2

(
1 + v2

10
+ 19(1 − v − u)2

20

)
, (4.1)

where we have set u = Sg and v = So. This is the “full” three-phase flow model, and we see that Fg is not very
dependent on v. In order to define a triangular method we set

v = 1 − u

2
and (1 − u − v) = 1 − u

2
,
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Fig. 2 Example 2, with the SG(E) scheme and �x = 1/40. Top left: gas saturation u; Top right: oil saturation v; Bottom left: water
saturation 1 − u − v

which gives the flux function

Fg(u) = u2

u2 + (9/1600)(1 − u2)

(
1 − 163

3200
(1 − u)2

)
. (4.2)

We have used the initial values

v(x, 0) =
{

0, x < 0,
1
2 + 1

4 sin(2πx), x ≥ 0,
u(x, 0) =

{
0, x < 0,

1 − v(x, 0), x > 0.
(4.3)

This is meant to model the situation where one has a mixture of oil and gas in the reservoir, and one attempts to
inject water in order to force out the oil and the gas. We have used (4.2) for the gas flux and the SG(E) scheme to
calculate approximate solutions. In Fig. 2 we show contour plots of the gas, oil, and water saturations as functions
of x and t for −0.05 ≤ x ≤ 5 and 0 ≤ t ≤ 2. Again the solutions are captured quite well.

Example 3 So far we have considered numerical examples for 2 × 2 triangular systems. Next, we present some
numerical results for a model 3 × 3 triangular system, based on the flux functions

f1(u1) = 1

2
u2

1,

f2(u1, u2) = u1u2(u2 − 2), (4.4)

f3(u1, u2, u3) = u1u2(u3 − 1)(u3 − 2),
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Fig. 3 Example 3, with the SG(E) scheme and SG(A) schemes and �x = 0.01 and t = 1. Top left: u1; Top right: u2; Bottom left: u3

and the Riemann initial data

u1(x, 0) =
{

2, if x < 0,

0.5, if x > 0,
u2(x, 0) =

{
1.8, if x < 0,

1.2, if x > 0,

u3(x, 0) =
{

1.9, if x < 0,

1.1, if x > 0.

The numerical results for the SG(E) and SG(A) schemes are shown in Fig. 3.
As expected, both schemes do quite well in resolving the solution. In particular, the resolution of u3 is quite

good, despite the fact that the leading shock on the right is very weak.

Example 4 We use the same fluxes as in the previous example (i.e., (4.4)), but we replace the initial data by

u1(x, 0) =
{

2, if x < 0, u2(x, 0) ≡ 1.5,

0.5, if x > 0, u3(x, 0) ≡ 11
6 .

(4.5)

This problem is more complicated than the previous example as the initial data are chosen to induce resonance.
All three eigenvalues coincide in this case. We show the results in Fig. 4. The key point in this example is the
complicated structure of u3 in the form of a compound shock (shock followed by rarefaction) in the second wave
for u3. This feature is a consequence of the resonance of the initial data in this case and was absent in the previous
example. Notice the resolution of the compound shock by both schemes in this case. There is a slight undershoot
in the rightmost shock wave for the SG(E) scheme, but the undershoot vanishes in the limit. We have also tested
the Lax–Friedrichs scheme for this example and found that we need 20–30 times more mesh points to get the same
resolution as with the SG(E) and SG(A) schemes.
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Fig. 4 Example 4, with the SG(E) scheme and SG(A) schemes, �x = 0.01 and t = 1. Left: u2; Right: u3

5 Conclusion

The main issue addressed in this paper has been the design of numerical schemes for general m × m triangular
systems of conservation laws. One motivation for considering equations in triangular form is due to their appearance
as special “reduced” models for three-phase flows in a porous medium. Although, these systems are hyperbolic, they
fail to be strictly hyperbolic because the eigenvalues can coincide. Hence, they posses a complicated wave struc-
ture, making the design of conventional numerical schemes quite hard. We have described a class of finite-volume
schemes, termed semi-Godunov schemes, which are based on “local” decoupling of the system into a sequence of
single conservation laws with discontinuous coefficients. Two classes of schemes of this type have been presented.
One class is based on exact Riemann solvers for conservation laws with discontinuous flux (cf. the SG(E) scheme
(3.7)), while another class is based on approximate Riemann solvers for conservation laws with discontinuous flux
(cf. the SG(A) scheme (3.11)).

Both schemes are easy to implement. The computational cost for the m × m system is the same as that of
solving m scalar conservation laws simultaneously and is similar to the cost of the Lax–Friedrichs schemes. Yet,
these schemes have low numerical diffusion and resolve the solution quite well. We can prove some properties of
the schemes, including consistency, invariant region principles, and moreover that they reduce to the standard
upwind schemes when the flux functions are monotone. Hence, these schemes can be considered as extensions of
the upwind scheme for systems with non-monotone fluxes. We have presented numerical experiments to justify the
robustness and computational efficiency of the schemes.

Since the schemes rely on solvers for scalar conservation laws (with discontinuous flux), it is easy to design
higher-order versions. Similarly, schemes of this type can be easily modified to incorporate effects of heteroge-
neous media. Finally, these schemes can form the basis for computing numerical fluxes along normal directions in
a multi-dimensional finite-volume code.

Acknowledgements KHK has been supported in part by an Outstanding Young Investigators Award from the Research Council of
Norway.

References

1. Gimse T, Risebro NH (1992) Solution of Cauchy problem for a conservation law with discontinuous flux function. SIAM J Math
Anal 23(3):635–648

2. Diehl S (1925) A conservation law with point source and discontinuous flux function modeling continuous sedimentation. SIAM
J Appl Math 56(2):1980–2007

3. Towers JD (2000) Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J Numer Anal
38(2):681–698

123



Semi-Godunov schemes for general triangular systems of conservation laws 349

4. Towers JD (2001) A difference scheme for conservation laws with a discontinuous flux-the nonconvex case. SIAM J Numer Anal
39(4):1197–1218

5. Karlsen KH, Risebro NH, Towers JD (2003) Upwind difference approximations for degenerate parabolic convection–diffusion
equations with a discontinuous coefficient. IMA J Numer Anal 22(4):623–664

6. Karlsen KH, Risebro NH, Towers JD (2003) L1 stability for entropy solution of nonlinear degenerate parabolic convection–diffu-
sion equations with discontinuous coefficients. Skr K Nor Vidensk Selsk 3:49

7. Adimurthi JJ, Veerappa Gowda GD (2004) Godunov-type methods for conservation laws with a flux function discontinuous in
space. SIAM J Numer Anal 42(1):179–208

8. Adimurthi J, Mishra S, Veerappa Gowda GD (2005) Optimal entropy solutions for conservation laws with discontinuous flux. Hyp
Diff Eqns 2(4):1–56

9. Mishra S (2005) Analysis and Numerical approximation of conservation laws with discontinuous coefficients. PhD Thesis, Indian
Institute of Science. Bangalore

10. Karlsen KH, Mishra S, Risebro NH (2006) Convergence of finite volume schemes for a triangular system of conservation laws.
Preprint.

11. Chavent G, Jaffre J (1986) Mathematical models and Finite elements for reservoir simulation. North Holland, Amsterdam
12. Bürger R, Karlsen KH, Tory EM, Wendland WL (2002) Model equations and instability regions for the sedimentation of polydis-

perse suspensions of spheres. ZAMM Z Angew Math Mech 82(10):699–722
13. Karlsen KH, Lie K-A, Natvig JR, Nordhaug HF, Dahle HK (2001) Operator splitting methods for systems of convection-diffusion

equations: nonlinear error mechanisms and correction strategies. J Comput Phys 173(2):636–663

123


	Abstract
	Abstract
	Introduction
	A triangular three-phase flow model
	Semi-Godunov schemes
	Semi-Godunov (exact) scheme.
	Semi-Godunov (Approximate) scheme
	Numerical experiments
	Conclusion
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


